
Physics 566, Quantum Optics 
Problem Set #6 

Due: Monday Nov. 8, 2010 
 
Problem1:  The beam splitter and other linear transformations (20 points) 
We’re all familiar with classical linear optics.  This problem explores the quantum 
description. 
 
Consider a symmetric beam splitter 
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(a) Show that 

� 

t 2 + r 2 =1, 

� 

Arg(t) = Arg(r) ± π
2

, so that a possible transformation is, 

� 

Ea
(out ) = T Ea

(in ) + i 1−T Eb
(in ),  

� 

Eb
(out ) = T Eb

(in ) + i 1−T Ea
(in ), where 

� 

T = t 2 . 
 
Classically, if we inject a field only into one input port, leaving the other empty, the field 
in that mode will become attenuated,  e.g., 

� 

Ea
(out ) = T Ea

(in ) < Ea
( in ). 

 
(b)  Consider now the quantized theory for these two modes, 

� 

Ea ⇒ ˆ a , 

� 

Eb ⇒ ˆ b .  Suppose 
again that a field is injected only into the “a-port”.  Show that 
 

� 

ˆ a (out ) = T ˆ a (in )  is inconsistent with the quantum uncertainty. 
 
(c) In order to preserve the proper commutation relations we cannot ignore vacuum 
fluctuations entering the unused port.  Show that if the “in” and “out” creation operators 
are related by the scattering matrix, 
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(d)  Suppose a single photon is injected into the a-port, so that the “in-state” is 

� 

ψ (in ) = 1 a ⊗ 0 b .   The “out-state” is 

� 

ψ (out ) = ˆ S ψ (in )  where 

� 

ˆ S  is the “scattering 

operator”, defined so that 

� 

ˆ S ̂  a (in )† ˆ S † = ˆ a (out )†and 

� 

ˆ S ̂  b (in )† ˆ S † = ˆ b (out )†  . 
 

Show that 

� 

ψ (out ) = t 1 a ⊗ 0 b + r 0 a ⊗ 1 b . 

 
(e)  Suppose a coherent state is injected into the a-port 

� 

ψ (in ) = α a ⊗ 0 b . Which is the 
output,  

� 

ψ (out ) = tα a ⊗ rα b  or 

� 

ψ (out ) = r α a ⊗ 0 b + t 0 a ⊗ α b ?  Explain the 

difference between these. 
 
 (f)  We can model a photon counter with a finite quantum efficiency η as perfect 
detector preceded by a beam splitter of with transmission coefficient η.   
 
 
 
 
 
Show that the photon counting statistics, i.e. the probability to detect m photons is 
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∑ ηm (1−η)n−m , where 

� 

pn  is the distribution before the beam-splitter. 

Explain the meaning of this expression. 
 

(g)  A general linear optical system consisting, e.g., of beam-splitters, phase shifters, 
mirrors, etalons, etc. can be described by a unitary transformation on the modes 
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In the quantum description the mode operators transform by the scattering transformation 

� 

ˆ a k
(out ) = ˆ S ̂  a k

(in ) ˆ S † = uk ′ k ˆ a ′ k 
(in )

′ k 
∑ , where 

� 

uk ′ k  is a unitary matrix. 

 

η 



Show that if we start with a multimode coherent state 

� 

ψ (in ) = αk
( in ){ } , the output state is 

ALSO a coherent state, 

� 

ψ (out ) = αk
(out ){ } , with 

� 

αk
(out ) = uk ′ k α ′ k 

( in )

′ k 
∑ . 

 
(i)  The previous part highlights how linear transformations are essentially classical.  This 
was true for exactly one photon inputs or coherent states.  However, this is not true for 
more general inputs.  Suppose we send one photon into both ports, of a 50-50 beam-
splitter T=1/2, 

� 

ψ (in ) = 1 a ⊗ 1 b . Show that  the output state is, 

 

� 

ψ (out ) =
1
2
2 a 0 b + 0 a 2 b( ). 

 
This says that the two photons “bunch”, both going to port-a or to port-b, but never one in 
port-a and one in port-b.  This is an effect of Bose-Einstein quantum statistics.  Explain 
in terms of destructive interference between indistinguishable processes. 



Problem 2:  Resonance fluorescence from a two-level atom (20 points) 
 
Consider a two-level atom driven by a classical electric field, near resonance.  The atom 
will scatter this radiation, i.e., it will fluoresce.  The purpose of this problem is to study 
some of the import quantum optical properties of this radiation. 
 
We measure the scattered electric field with a detector at some position rD  and the atom 
at the origin.  As seen in Problem 4 of P.S.#4, the radiated field operator is proportion to 
the atomic dipole operator at the retarded time 
 

 E
(± ) (rD ,t)∝ d (± ) (t − rD / c)∝σ  (t − rD / c)  

 
where  σ  (t)  is the atomic lowering/raising operator (in the Heisenberg picture). 
 
(a) Show that the mean intensity measured by the detector proportional to 
 

I(t) ∝ E (− ) (rD ,t)E
(+ ) (rD ,t) ∝ σ− (t − rD / c)σ + (t − rD / c) = Pe(t − rD / c)  

 
where Pe(t)  is the probability of being in the excited state at time t. Interpret this result. 
 
In steady state, when detailed balance is achieved between absorption and emission after 
a few spontaneous decay lifetimes, Pe(t)  goes to constant (stationary statistics).   
What is Pe(t)  in steady state from our solution to the optical Bloch equations? 
 
(b) The radiating dipole has a mean value and fluctuations about the steady state solution 
due to the vacuum.  Let us write, σ ± (t − rD / c) = σ ± (t − rD / c) + δσ ± (t − rD / c) , where 
the expectation value is taken in the steady state solution and the fluctuation operator is 
then given by δσ ± (t − rD / c) = σ ± (t − rD / c) − σ ± (t − rD / c) . 
 
- Show that in steady state, I ∝ σ +

2
+ δσ +δσ− . 

- The term σ +

2
≡ Icoh  is defined as the “coherent” (or elastic) part of the scattered 

intensity.  Justify that interpretation.   

Show that Icoh =
1
2

s
(1+ s)2

, where s is the saturation parameter. 

(c) The part arising from the fluctuating dipole, δσ +δσ− ≡ Iincoh , is known as incoherent 
(or inelastic) component of the scattered intensity.  

- Show that Iincoh =
1
2

s2

(1+ s)2
.  Note that the ratio Iincoh / Icoh = s , thus for low saturation, 

elastic coherent photon scattering dominates over incoherent inelastic scattering. 
- Plot Icoh  and Iincoh  as a function of s. 
 



Aside:  The two-time, first-order autocorrelation of the field determines the power 
spectrum of scattered light, as discussed in lecture. Fourier transforming the correlation 
function, the spectrum shows an “elastic peak” at the frequency of the incident light, with 
power given by Icoh , and the famous “Mollow triplet”, consisting of three peaks at 
frequencies ω =ω0 ,ω0 ±Ω , where ω0  is the atomic resonance, and Ω  is the Rabi 
frequency.  This part of the spectrum represents the “inelastic scattering”.  This is 
discussed in all textbooks on quantum optics. 
 
Consider now the second-order correlation function, representing the correlation between 
detecting photons at two different times, 
 

G (2) (t + τ ,t) = E (− ) (t)E (− ) (t + τ )E (+ ) (t + τ )E (+ ) (t) . 
 

After a short transient period, when the atom reaches steady state,  
 

G (2) (τ )∝ σ + (0)σ + (τ )σ− (τ )σ− (0) = Tr ρ0σ + (0)σ + (τ )σ− (τ )σ− (0)( ) , 
where ρ0  is the steady-state solution (equivalent to the “initial time” here).   

 
(d) Show that G (2) (τ )∝ π e(τ )π g (0) Pe,0 , where Pe,0  is the probability to be in the 
excited state at the start of the correlation and, π g (0) = g g , π e(0) = e e . 
 
(Note:  Because the time evolution of the atoms alone is not unitary, this is only true in 
the Markov approximation discussed in the Wigner-Weisskopf approximation.  This 
expression for G(2) follows from what is known as the “quantum regression theorem) 
 
(e) It follows from (d) that, G (2) (τ )∝ P(e;τ | g;0)Pe,0 , where P(e;τ | g;0)  is the 
conditional probability that the atom is in the excited state at time τ , given that it was in 
the ground state at time 0.  Explain the physical meaning of this result. 
 
(f) The expression for P(e;τ | g;0)  follows from the solution to the optical Bloch 
equations for damped Rabi oscillations (known as the Torrey solution).  We did not do 
this in class, but it follows straightforwardly from the Bloch eqns.  On resonance,  
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where Γ  is the spontaneous emission rate and  Ω ≡ Ω2 − Γ2 / 4 .  
 
Use this to show that the normalized correlation function is  
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(h) Plot this as a function of Γτ  for the cases 2Ω / Γ = .1 and 2Ω / Γ = 10 .  Comment on 
the important features of these curves. 


